

University of Alberta Engineering Department 116 St and 85 Ave. Edmonton, Alberta T6G 2R3

August 9, 2021

Connie Phillips Executive Director Alberta Beekeepers Commission 11434-168 Street, #102 Edmonton, AB T5M 3T9

Re: Design/Automate Removal of Frames from an Extraction Line – Project Phase III Deliverables.

Dear Ms. Phillips,

SHLYM Designs is pleased to present the Phase III report of the Automated Removal of Frames from an Extraction Line. The following are outlined in the report:

- Description of final design
- Design Analysis
- Cost and Manufacturing estimates
- Design Compliance Matrix
- Component and Assembly CAD drawings

The total number of engineering hours for the project was 481 for a total hour cost of \$25,250. The estimated manufacturing cost for the designed device is \$16,637.

If there are any concerns or questions regarding the Phase III report, please do not hesitate to contact our Team Leader by email: <u>mlantz@ualberta.ca</u>. It has been a pleasure working with you and we look forward to your review of our final design for the automated removal device and future partnerships.

Best Regards,

SHLYM Designs

Cc: Dr. Kajsa Duke, University of Alberta Dr. Martin Barczyk, University of Alberta Mr. Mark Ackerman, University of Alberta

Mec E 460 Design Project

Design/Automated Removal of Frames from an Extraction Line

Phase III

August 9, 2021

SHLYM Designs

SHLYM Designs Team: Aidan She Carlos Moreno Mason Lantz Qiulin Yu Zachary Hansen

Executive Summary

The objective of SHYLM Design is to design an automated device to remove frames from the end of the honey extraction line and return the frames to the hive box. The design must be able to continuously pack the 8 frames in a hive box at the end of the extraction line.

The designed automated frame removal device has three parts: the box removal system, the box packer, and the flat belt conveyor. The general dimensions of the device are: 2351 mm in width, 2541 mm in length, and 931 mm in height. The box removal system is used to push the empty hive box from the flat belt conveyor to the box carrier of the box packer with a speed of 0.61 m/s. The box packer moves with the empty hive box to reach the end of the extraction line and pack the frames into the empty hive box. The frames are evenly distributed through adjusting the motion in the z-direction of the pneumatic cylinder of the box packer. Then the full packed hive box is removed from the box carrier by another stroke of the pneumatic cylinder from the box removal system. This off loads the filled box to the output flat belt conveyor. The total time of "Pack and Go" frames is estimated to be 12s.

To complete the work required for the project to be successful the projected incurred a cost of hours worked by the members of the SHYLM Design team. In Phase I the team expended 63 hours doing market research, understanding the problem, and considering possible solutions. In Phase II the team utilized 171 hours to create three design concepts to be considered in more detail for potential solutions to the problem at hand. In Phase III the group completed the design of the automated frame removal device using 247 hours to finish the project. Overall the total hours amounted to 481 hours and used 8 advising hours which at a rate of \$50/hr and \$150/hr respectively lead to the expense of \$25,250 in management costs.

Word Count: 343

SHLYM Designs Table of Contents

1 Introduction
2 Innovated Design Description
2.1 Design Overview
2.2 Hive Box Removal System
2.3 Box Packer
2.3.1 Photoelectric Sensor
2.3.2 Two Pneumatic Cylinders of Box Packer
2.3.3 Box Carrier
3. Detailed Design Analysis
3.1 Cycle Calculations
3.2 Box Carrier Stress Analysis
3.3 Sensor Support Stress Analysis
3.4 Pneumatic Calculations
4 Product/Manufacturing Cost Analysis
5 Design Compliance Matrix
6 Project Management
6.1 Project Phases
6.2 Hours and Work Accomplished 19
7 Future Work
8 Conclusion
References
Appendix A: Design Matrix
Appendix B: FEA
Appendix C: Cost Analysis

Appendix D: Sustainability & Material Recycling Information	. 41
Appendix E: Controls & Automation	. 42
Appendix F: Pneumatics Calculations	. 49
Appendix G: Cycle Calculations	. 52
Appendix H: Gantt Chart	. 55
Appendix J: Detailed Design Drawing	. 56

Word count: 2170

List of Figures

Figure 1 Honey extraction line and its components [1].	1
Figure 2 Scale of the frame in mm [2]	2
Figure 3 Views of the hive box. (a) Hive box with frames [1]. (b) Standard empty hive bo	x with
view of spacer [3]	2
Figure 4. Dimensions of the workspace. (a) Isometric view. (b) Front view.	3
Figure 5. Overview of the design	4
Figure 6. The overview of hive box removal system	5
Figure 7. The overview of the box packer. (a) The isometric view. (b) The motion view	6
Figure 8. Performance of the Diffuse-Reflective Sensors [4]	6
Figure 9. Design analysis process flow chart	8
Figure 10. The design flow chart.	9
Figure 11. The hours for three phases	20
Figure 12. The view of generated mesh with even distributed load.	29
Figure 13. The simulation result of Von Mises. (a) Steel 304. (b) Aluminum	30
Figure 14. The simulation result of strain. (a) Steel 304. (b) Aluminum.	31
Figure 15. The simulation result of the safety factor. (a) Steel 304. (b) Aluminum	32
Figure 16. The simulation result of the displacement. (a) Steel 304. (b) Aluminum.	33
Figure 17. The thickness changing for each scenario.	34
Figure 18. View of the sensor support. (a) General view. (b) Mesh of sensor support	35
Figure 19. Simulation result of stress.	36
Figure 20. Simulation result of displacement.	36
Figure 21. Simulation result of factor of safety.	37
Figure 22. The mesh of the pneumatic table	38
Figure 23. The Von Mises analysis result of the pneumatic cylinder table	39
Figure 24. The FOS simulation result of pneumatic cylinder table	39

List of Tables

Table 1. The parts of the automated removal of frames from extraction line.	3
Table 2. Product Cost Analysis	. 10
Table 3. The Design Compliance Matrix	. 16
Table 4. Engineering Hours and Associated Costs.	. 20
Table 5. Reversed Design Matrix.	. 23
Table 6. Properties of Steel 304 and Aluminum.	. 28
Table 7.The design study results	. 34
Table 8. The design study of sensor support	. 37
Table 9. Area recyclers accepting machine scrap.	. 41

1 Introduction

In Alberta, most of the beekeeping industry relies on human labour at the end of the honey extraction line (Figure 1) to remove the frames (Figure 2) from the line and place them into the hive box (Figure 3). When human workers are involved, the beekeeper must pay salaries and other benefits, which can be a large proportion of a beekeeper's expenses.

SHLYM Designs has been contracted by Alberta Beekeepers Commission to design a device to remove frames from the end extraction line and return the frames to the hive box. The client requested the device to be semi-automated, able to pack 100 boxes/hour, and have a return on investment in 3 years. SHLYM Designs has developed a completed design – a pneumatic hive box packer to satisfy the project requirements. The dimensions of the workspace are shown in Figure 4.

Figure 1 Honey extraction line and its components [1].

Figure 2 Scale of the frame in mm [2].

Figure 3 Views of the hive box. (a) Hive box with frames [1]. (b) Standard empty hive box with view of spacer [3].

Figure 4. Dimensions of the workspace. (a) Isometric view. (b) Front view.

2 Innovated Design Description

2.1 Design Overview

The device for the automated removal of frames from the extraction line designed by SHLYM Designs contains 3 parts: hive box removal system, box packer, and flat conveyors. The dimensions of the entire automated device (2351 mm x 2541 mm x 931 mm) fits the workspace (Figure 4). The complete device model can be viewed in Figure 5. Both the hive box removal system and box packer are driven by pneumatic cylinders. The flat belt conveyors are driven by the motor to assist in transporting the hive box. The entire device allows the hive box to move in the x, y, and z directions. In this report, the designed parts are discussed (Table 1).

Table 1. The parts of the automated removal of frames from extraction line.

N.O.	Parts	Direction	Function			
1	Hive box removal	Moves box in x	Pushes the empty box from belt conveyor to			
	system	direction	box carrier of box packer. Also pushes pack			
			box from box carrier to another belt conveyor.			

2	Box packer	Moves box in y &	Packs the frames from the slide rails and acts
		z direction	as a transfer station for the hive box. Adjust the
			speed in z direction of the pneumatic cylinder
			to evenly distribute the frames in the box by
			control system.
3	Flat belt conveyor	Moves box in x &	Transfers the empty hive box to the hive box
		z direction	removal system area and removes the packed
			hive box from the hive box removal system
			area.

(a)

Figure 5. Overview of the design.

2.2 Hive Box Removal System

The Hive Box Removal System is an automatic, pneumatic based material removal system that allows for separation of the hive box placed on a flat conveyor belt using a pneumatic separator. The sensor in the flat conveyor belt can detect if empty hive box reaches the end of the flat conveyor belt based on its location (Figure 6). The control circuit is required to be able to detect the hive box and stop the conveyor belt from pushing the empty hive box aside. The pneumatic cylinder then pushes the empty hive box out of the conveyor belt to the box carrier.

Extended Direction

Figure 6. The overview of hive box removal system.

The pneumatic cylinder selected is the Sensor Ready Tie Rod Air Cylinder. It uses sensors to detect the linear position of the piston for application, which is critical in this system to make sure the stroke is long enough to push the empty box to the box carrier of box packer.

2.3 Box Packer

The box packer (Figure 7) consists of a box carrier and pneumatic cylinders. The box packer will replicate the motion of a human packing the box which is to scoop the frames from underneath using the box itself. Therefore, the box packer packs the frames by moving the box around using the box carrier, done by positioning the box directly under the frames, and then moving up and out to scoop the frames in.

Figure 7. The overview of the box packer. (a) The isometric view. (b) The motion view.

2.3.1 Photoelectric Sensor

The diffuse-reflective sensor is used to detect and count 8 frames from at the end of extraction line. It consists of emitter and receiver in same housing. The emitter sends out a beam of pulsed infrared light, which is reflected directly by the frame. Then the output switches when the frame is detected within the reflective distance. Further Program Logic Control developing is required to integrate into the automated system.

Figure 8. Performance of the Diffuse-Reflective Sensors [4].

2.3.2 Two Pneumatic Cylinders of Box Packer

The two pneumatic cylinders are used to control the movement of the box carrier of box packer in y and z directions (Figure 7 (b)). First, set the unstretched pneumatic cylinders as the starting point (Figure 7 (a)). The control system will control the box carrier as it moves up in the y-direction with a limit of 876.15mm from the ground (height of frames from extraction line) Figure 4 4(b)). The height will ensure the diffuse-reflective sensor can reach the side of the frames. Second, the control system will turn on the pneumatic cylinder to extend the rod to move the box carrier towards the frames from the slider rails in z-direction. Meanwhile, the diffuse-reflective sensor counts the number of frames. Third, once the output of the sensor is 8, the control system switches the pneumatic cylinder from the z-direction to the y-direction, with a limit of 890 mm from the ground. Then, the 8 frames reach the hive box by box carrier. Fourth, the pneumatic cylinder in the z-direction lowers the box carrier to the start point. Finally, the control system moves the pneumatic cylinder in the z-direction back and forth approximately 5 times (further testing is required) to make sure that each frame is located in the appropriate spacer (Figure 3 (b)).

2.3.3 Box Carrier

The box carrier is the compartment that actually holds the hive box while the packer is in motion. The box carrier consists of sheet metal in an angular U-shape, where two ends on either side are open. This is to facilitate the hive box receiving and removal. It also eliminates the need for the box packer to turn around. Per regulations, food-safe Steel 304 and Aluminum are the materials used for the box carrier.

3. Detailed Design Analysis

The final design was analyzed based on Concept III from Phase 2. In the new design, force analysis was completed based on the hive box and 8 frames. Pneumatic cylinder analysis and stress analysis were completed to evaluate the optimal materials and dimensions for the design's feasibility and safety. The design analysis process flow chart is shown in Figure 9 and the calculations are located in the Appendix.

Figure 9. Design analysis process flow chart.

3.1 Cycle Calculations

To determine the cycle time for the system to operate a calculation was undertaken to find the time to pack a box, the velocity at which the box is packed, and the number of boxes and frames packed per hour. These calculations can be seen in Appendix G. The total time it takes to pack a single box was calculated to be between 6 and 12 seconds. The velocity at which the box is packed does not exceed 0.61m/s and the total number of boxes packed an hour is 300 which is three times the required amount, and 2400 frames packed per hour.

3.2 Box Carrier Stress Analysis

Stress analysis was used to ensure the box carrier will not break or be damaged during operation. The goal of the box carrier evaluation was to find the optimal material and thickness. The box carrier is required to be able to carry a full box containing 8 frames while being pushed from the bottom by a fixed pneumatic cylinder. Based on the completed detailed design analysis, Steel 304 was chosen as the material for its ability to withstand the stress, strain, and deflection required. A thickness of 4 mm was chosen because it resulted in a small mass and minimal stress for the box carrier. The design flow chart is shown in Figure 8. The analysis is in Appendix B.

Figure 10. The design flow chart.

3.3 Sensor Support Stress Analysis

Stress analysis was completed on the sensor support to ensure it will not snap or yield during operation. The stress was evaluated to choose the optimal length for the sensor support using the material AISI 304. Simulations were completed based on the stress, displacement, and factor of safety when the force from the box was applied to the top plate. The completed detailed design analysis demonstrated that a length of 260 mm would be best as the stress would be minimized. The analysis refers Appendix B.

3.4 Pneumatic Calculations

The facility that this system is intended to be implemented in already has a high capacity compressed air system installed. Calculations were done to show what the required CFM of air in a compressed air system would be in order to determine what the load would be on the system. Also this calculation also has the added benefit of helping to determine the size of compressed air system that would be required if it was installed in a new honey extraction line. Honey extraction lines tend to use compressed air in other processes of the extraction line, so the assumption that compressed air should be available for our machine is a good assumption. The system is pressurized to 100psi at the facility, so the CFM require to achieve the speeds we expected was approximately 4 CFM. The calculations also allowed us to determine the minimum size of tubing required to transfer the compressed air to the piston, and the minimum size was found to be 1/8" tubing, however large tubing that is already installed on the extraction line will be used to add to the safety of the device

4 Product/Manufacturing Cost Analysis

Table 2. Product Cost Analysis.

Part	Component	Component Description	Model	Unit Price (CAD)	Quantity	Total Cost (CAD)	Reference
Hive Box Removal System	Pneumatic Cylinder	Sensor Ready Tie Rod Air Cylinder, Double Acting, 2-1/2'' Bore, 2- 7/8'' Wide, 24'' Stroke Length	4917K408	\$358.30	1	\$358.30	https://www.mcmaster.com/ 4917K408/
	Pneumatic Cylinder table plate	Manufacturing Steel 304	_	\$176.76	1	\$176.76	Quote in Appendix C
	Pneumatic Cylinder Table Legs	304/304L Stainless Steel Unthreaded Pipe, 1 Pipe Size, 3 Feet Long	4804T152	\$170.30	4	\$681.2	https://www.mcmaster.com/ 4804t152/
	Pneumatic Cylinder mount	Manufacturing Steel 304	-	\$35.98	2	\$71.96	Quote in Appendix C

0						
Pneumatic Cylinder Table Fitting	Medium Flange 1'' Diameter	Global Industrial Pipe Fitting	\$10.75	4	\$43	https://www.globalindustrial .ca/
Rubber Head	Manufacturing Polyurethane	-	\$50	1	\$50	-
Bolts for Table Fitting	M12-1.75 X 70mm Class 8.8 Metric zinc Plated Steel Flange Bolts	Prime- Line	\$50.09/pa ckage (10)	2	\$100.18	Home Depot
Bolts for Pneumatic Cylinder Mount	M8-1.25X 20 mm Class 8.8 Zinc Plated Hex Bolt	Everbilt	\$0.96	4	\$3.84	Home Depot
Washers for Pneumatic Cylinder Mount	M8 Zinc-Plated Metric Flat Washer	Everbilt	\$1.17/bo x (5- piece/Ba g)	2	\$2.34	Home Depot
Nuts for Pneumatic Cylinder Mount	M8-10.9 Zinc Metric Hex Nut	Everbilt	\$2.47/ box (5 per bag)	1	\$2.47	Home Depot
Bolts for Pneumatic Cylinder	5/16 in18X 2 in. Zinc Plated Hex Bolt	Everbilt	\$0.27	4	\$1.08	Home Depot

	Fabrication & Assembly				1	\$349.00	See Appendix C
		\$1,840.13					
Belt Conveyor	Flat Belt Conveyor	Belt Conveyor. 120V AC, 12 Feet Long, 20'' Wide Belt, 25''wide Frame	5816K531	\$4764.90	2	\$9,529.8	https://www.mcmaster.com/ 5816K531/
			В	elt Conveyo	r Subtotal:	\$9,529.8	
Box Packer	Tapped Linear Motion Shaft	Tapped x Straight linear shaft, 52100 Alloy Steel, 3/8" Diameter, 18" Long	6649K128	\$46.95	4	\$187.79	https://www.mcmaster.com/ 6649K128/
	Round Body Air Cylinder for Washdown	Double Acting, 300 Series Stainless Steel, 2" Bore, 12" Str oke Length	6239K271	\$320.56	1	\$320.56	https://www.mcmaster.com/ 6239K271/
	One-Piece Support-Rail Shaft	Ceramic-Coated 6063 Aluminum, 1/2" Diameter, 18" Long Support shaft	1049K14	\$155.23	2	\$310.46	https://www.mcmaster.com/ 1049K14/

NITRA Pneumatic Air Cylinder	all stainless steel non-repairable, 2in bore, 18in stroke, double acting, magnetic piston, double end mount	F32180D D-M	\$217.98	1	\$217.98	https://www.automationdire ct.com/adc/shopping/catalog /pneumatic_components/pne umatic_air_cylinders/round_ body_all_stainless_steel_air cylinders_(f- series)/f32180dd-m
Mounted Linear Sleeve Bearing	Mounted Linear Sleeve Bearing for Support Rail Shafts, 0.0015" Clearance, 1- 1/2" Length	6374K313	\$106.19	2	\$212.39	https://www.mcmaster.com/ 6374K313/
Flange- Mounted Linear Ball Bearing	Flange-Mounted Linear Ball Bearing with Round Housing, 3/8" Shaft Diameter, 7/8" x 1-1/2" x 1-1/2"	6483K52	\$35.00	4	\$140.01	https://www.mcmaster.com/ 6483K52/
12 Ga 304 Stainless Steel Sheet Metal	30" x 52"		\$352.13	1	\$352.13	Quote in Appendix C
¹ ⁄2" 304 Stainless Steel Plate	12" x 12"		\$208.34	1	\$208.34	Quote in Appendix C

	2" x 2" x 0.25"	For support		\$205.07	1	\$205.07	Metal Supermarkets
	Stainless Steel	legs, 80" total					-
	Tubing	_					
	¹ / ₂ "-13 SS Hex			\$2.42	16	\$38.72	Fastenal
	Bolt						
	¹ / ₂ "-13 SS Hex			\$0.73	2	\$1.46	Fastenal
	Nut						
	¹ / ₂ " SS Washer			\$0.56	18	\$10.08	Fastenal
	10-24 x ½" SS			¢0.19	16	¢2.99	Fastanal
				\$0.18	16	\$2.88	Fastenal
	Socket Cap Screw						
	10-24 SS Nut			\$0.19	16	\$3.04	Fastenal
	10 24 55 144			ψ0.17	10	ψ3.04	i ustenur
	#10 SS Washer			\$0.04	32	\$1.28	Fastenal
	8-32 x ½" SS			\$0.14	28	\$3.92	Fastenal
	Bolt						
	8-32 x 5/8" SS			\$0.16	8	\$1.28	Fastenal
	Bolt						
	8-32 SS Nut			\$0.16	32	\$5.12	Fastenal
				*0 0 1	<i>c</i> 0	¢2.52	
	#8 SS Washer			\$0.04	68	\$2.72	Fastenal
	Fabrication &			\$500	1	\$500	See Appendix C
	Assembly						FF
				Box Packer	Subtotal:	\$4,114.42	
Control	Arduino Uno		A000073	\$34.99	1	\$34.99	Amazon
System	Microcontroller						
				•			

	SainSmart 4-	Switched	101-70-	\$9.99	2	\$19.98	A mozon
				\$9.99	Z	\$19.98	<u>Amazon</u>
	Channel Relay	voltage: 250 V	101				
	Module	AC, 10 A					
		Switching					
		voltage: 5V DC					
	Air Directional	5/3 (Closed	4666A3	\$413.53	1	\$413.53	https://www.mcmaster.com/
	Control Valve	Center) Flow,					<u>4666A3/</u>
	with Flow	3/8" Push-to-					
	Control	Connect					
	Air Directional	5/2 Flow,	4666A1	\$278.84	2	\$557.67	https://www.mcmaster.com/
	Control Valve	Double					4666A1/
	with Flow	Solenoid, 3/8"					
	Control	Push-to-Connect					
	Photoelectric	1 ft sensing	65845K46	\$125.80	1	\$125.80	https://www.mcmaster.com/
	Switch	distance, 120 V					65845K46/
		AC input					
			s Subtotal:	\$1,151.97			
			φ1,151.57				
				Design Subtotal:		\$16,636.32	
				Markup (10%)		\$1,663.63	
				Total sell	ing cost:	\$18,299.95	

SHLYM Designs 5 Design Compliance Matrix

The Design Compliance Matrix in Table 3 was derived from the Design Specification Matrix previously generated in the Phase 1 Report and the Design Evaluation Matrix previously generated in the Phase 2 Report. The revised Design Specification Matrix is located in Appendix A.

Table 3. The Design Compliance Matrix.

Item	Specification (description)	Design	Comments	Importance	Achieved?					
		Authority		(1-5)	(Yes/No)					
	Physical									
1.1	Fit the working place	SHLYM	The working size is 3353 mm	5	Y					
	dimensions		x 3336 mm x 3546 mm							
1.2	Can hold full frame box	Client	Full frame box is ~15kg	5	Y					
1.3	Operational at 1.5 m	Client	Height of frame removal	4	Y					
			Functional							
2.1	Automatic Spacing of	Client	Boxes come with spacers that	3	Y					
	Frames		frames should slot into							
2.2	No Damage to Box	Client	Damage to spacers will cause	4	Y					
	Spacers		difficulty in inserting frames into							
	-		boxes							
2.3	Be able to consistently	Client	Client requires throughput of 100	4	Y					
	remove and replace the		boxes/hour							
	frames without damage									
2.5	Ability to Replace Frame	Client	The purpose of this design	4	Y					
	in Hive Box									
2.7	Ease of Manipulation	SHLYM	Should be easy to start and stop by	4	Y					
	r r		client							
I					1					

2.10	Resistance to Corrosion (from water, cleaning solutions, honey, etc.)	Client	Client Extraction line is sprayed down daily which increases chance of corrosion		Y
2.13	Intersperse	Client	The ability to add new frames to the 3 and 6 slots in the box is useful for removing old decayed frames	2	N
2.14	14 Food Safe Client All parts of the mechanism that touch the frame must be food safe and cannot be painted. Machine should be easy to clean/sanitize		5	Y	
			Others		
3.1	Cost of Product \$20,000	Client	Maximum cost of product considered by client	5	Y
3.3	Manufacturability	Client	Design should be made with manufacturability in mind	3	Y
3.4	Reliability	Client	Important to not drop frames	4	Y
3.5	Life Span of 10yrs	Client	The mechanism should last for 10- 15yrs to make the return on investment	4	
3.6	Documentation	Client	Drawing and documents of the device should be provided	5	Y
			Maintenance		
4.1	Part Availability	SHLYM	Parts information should be provided and readily available	4	Y
4.2	Ease of Assembly/Disassembly	SHLYM	Limit the requirement for specialized tools	4	Y
4.3	Ease of Maintenance	SHLYM	The device should be easy to repair and maintain	3	Y
			Environmental		

5.1	Material processing	SHLYM	The raw material extraction,	4	Y
			processing, and manufacturing are		
			not dangerous to the environment or		
			to the employees		
5.2	Waste Producing	SHLYM	Minimizing waste and hazardous	3	Y
			by-products, air pollution, energy		
			expenditure and others		
5.3	Design for Disposal or	SHLYM	The disposal or reuse plan should be	2	Y
	Reuse		provided		
		Conn	ie Phillips		

6 Project Management

A total of 481 hours was spent on the project during Phase 3. This is higher than the expected total hours predicted during Phase 1 and 2.

6.1 Project Phases

This project was spit up into three phases for the purposes of spreading out the work required to accomplish the design of the product. The first phase was intended to gather information about the process, and research potential solutions on the market. We were successful in determining that there were not any commercially available devices on the market currently within the price range for the intended task, and we were committed to being able to create one. Unfortunately, during Phase 1, we missed some crucial facts about the process which led to a change in design after the completion of Phase 2. The second phase was mostly about the creation and exploration of concept designs that could reasonably meet the clients needs. We were successful in generating three concept designs at the time and chose a design that we felt had the strongest ability to accomplish the task at hand. Phase 3 was the third and final phase of our project. At the beginning of Phase 3 we took the time to visit the facility with the intentions of getting the measurements to scale our design to the location it would be implemented in. However, visiting the facility showed us that our design would not work. The assumptions made early in Phase 1 and 2 did not fit the reality of the task, but we learned from these mistakes and iterated upon our design, converging to a final design that we are confident solves the problem at hand. In the end, the Phase 2 design that we selected did not continue through Phase 3 and in reflection, the design shares more similarities to Concept 1 in Phase 2 with a significant more fleshed out mechanism.

6.2 Hours and Work Accomplished

The updated project schedule is provided in Appendix H. Comparing actual hours to baseline hours, an increase of 22 hours for Phase III from the estimate in Phase II is noted. It is clear that the baseline hours from Phase I was, in the end, an underestimate, as our initial expectations for the time the project would take was expecting a majority of the work for the design to be accomplished in Phase II. The major shakeup in redesigning our project after visiting the extraction facility led to an increase in the amount of time it took to complete Phase III. The new updated hours tell the actual hours it took to complete the project. Table 4 has been

updated with the new revised hours and associated costs. Figure 11 shows the updated hours forecast in comparison with the previous forecast.

Table 4. Engineering Hours and Associated Costs.

	SHLYM Hours	Senior Advisor Hours	Subtotal (CAD)
Phase I	63	2	\$3,450
Phase II	171	3	\$9,000
Phase III	247	3	\$12,800
Total	481	8	\$25,250

Figure 11. The hours for three phases.

7 Future Work

Some factors could be analyzed further to ensure the success of the design during operation on the assembly line. However, due to time constraints, these considerations were not investigated in depth during the design project. Future recommendations for the client to consider include:

- Adjustable operational heights the height of the design could be adjustable for more convenient use in other beekeeping farms, where the operational height may be different.
- Method of placing certain frames in desired "3" and "6" slots originally a "nice to have" from the client, could be useful in placing certain frames in selected slots in order to help protect older, weaker frames and cycle in new frames.

SHLYM Designs 8 Conclusion

SHYLM Design has designed an automated frame removal device for an extraction line. There are three steps of device action. First, the hive box removal system pushes an empty hive box to the box carrier of the box packer. Second, the box packer packs 8 frames together from an extraction line with the empty hive box. Third, the full packed hive box is transferred to the flat conveyor belt by another push by the hive box removal system. These three steps to achieve the objective "Pack and Go". A detailed cost analysis was performed, and calculations and FEA were done to ensure the automated frame removal design is working accurately to push the box, reach the frames and pack the frames. The new design meets most of the design compliance matrix. Additional work is necessary to make the design feasible and fully operational.

References

- [1] Mid Sized Commercial Honey Extracting Room., Aug 1, 2018. Accessed on: May 28, 2021.
 Available from: <u>Mid sized Commercial Honey Extracting Room YouTube</u>
- [2] Building bee boxes. Accessed on: July 11, 2021. Available from: https://www.kelpstrewn.com/docs/building_hiveware.html
- [3] Fixed 9 Frame Spacer: 10PK. Betterbee. 2021. Accessed on: May 28, 2021. Available from: https://www.betterbee.com/wooden-hive-equipment-10-frame/spacer.asp
- [4] Are Photoelectric sensors suitable for harsh environment use? 2020. Design Spark. Accessed on: August 05, 2021. Available from: <u>https://www.rs-online.com/designspark/are-photoelectric-sensors-suitable-for-harsh-environment-use</u>

Appendix A: Design Matrix

In this appendix A, it is the revised Design Specification Matrix.

Table 5. Reversed Design Matrix.

Item	Specification (description)	Design Authority	Comments	Importance (1-5)	Changes	Achieved (Yes/No)	Notes
	(Physical	. ,		(
1.1	Mass of Single Frame is 1 kg	Client	Frames should not have honey in them after extraction	3			Parameter provided by client
1.2	Mass of Full Frame Box is 15 kg	Client	The boxes must be moved at both full and empty weights	3	Adjusted wording to move frame box	Y	
1.3	Height of Line is ~1.5 m	Client	Height of frame removal	4	Adjusted wording	Y	
1.4	Concrete Pad Support	Client	Mechanically fastened to concrete floor. Should be easy to disassemble/remove from extraction line	5			Unneeded in case of moving the assembly line
			Function	al		•	
2.1	Automatic Spacing of Frames	Client	Boxes come with spacers that frames should slot into	5		Y	
2.2	No Damage to Box Spacers	Client	Damage to spacers will cause difficulty in inserting frames into boxes	4		Y	

	D 11	C11			I I		1
2.3	Be able to consistently	Client	Client requires	4		Y	
	remove and replace the		throughput of 100				
	frames without damage		boxes/hour				
2.4	Ability to Lift Frame	Client	Needs to be able to	5			New design
			lift the frame off the				does not lift
			extraction line and				frames
			place into the box				
2.5	Ability to Replace	Client	The purpose of this	4		Y	
	Frame in Hive Box		design				
2.6	Ease of Maintenance	SHLYM	The device should	3	Moved to	Y	
			be easy to repair		Maintenance		
			and maintain		section		
2.7	Ease of Manipulation	SHLYM	Should be easy to	4		Y	
	-		start and stop by				
			client				
2.8	Emergency Stop	SHLYM	When an	5			Emergency will
	Button		emergency occurs,				not be critical
			operators can shut				enough to need
			off machine				stop button
			immediately				-
2.9	Operation Safety	Client/	Worker's safety is	5			Workers not
	(safety guards, covers,	SHLYM	paramount, the				present/minimal
	etc.)		design should take				danger
			this into				<u> </u>
			consideration				
2.10	Resistance to	Client	Extraction line is	5		Y	
	Corrosion (from water,		sprayed down daily				
	cleaning solutions,		which increases				
	honey, etc.)		chance of corrosion				
2.11	Adjustable Height	SHLYM	For different	1			Not applicable
			working				with new
			environments				design

2.13	Intersperse New	Client	The ability to add	2	Ν	Could not be
2.15	Frames	Chem	new frames to the 3	2	1	added due to
	Frames		and 6 slots in the			
						time constraints
			box is useful for			
			removing old			
		~~~	decayed frames			
2.14	Food Safe	Client	All parts of the	5	Y	
			mechanism that			
			touch the frame			
			must be food safe			
			and cannot be			
			painted. Machine			
			should be easy to			
			clean/sanitize			
			Other			
3.1	Cost of Product	Client	Maximum cost of	5		
	\$20,000		product considered			
			by client			
<del>3.2</del>	Production Volume	Client	If product is	1	¥	Focus on single
	<del>100 Units</del>		successful there are			production to
			many honey			accurately
			extraction facilities			measure costs
			that would be			
			interested in			
			<del>product</del>			
3.3	Manufacturability	SHLYM	Design should be	3	Y	
	······································		made with	_		
			manufacturability in			
			mind			
3.4	Reliability	Client	Important to not	4	Y	
J.T	Rendonity		drop frames	т	1	
3.5	Life Span of 10yrs	Client	The mechanism	4	Y	
5.5	Life Span of Toyls	Chem	should last for 10-	+	1	
			should last for 10-			



3.6	Documentation	Client	15yrs to make the return on investment Drawing and	5	Added to	Y	
			documents of the device should be provided		matrix		
			Maintenan	ice			
4.1	Part Availability	SHLYM	Parts information should be provided and readily- available	4	Added to matrix	Y	
4.2	Ease of Assembly/Disassembly	SHLYM	Limit the requirement for specialized tools	4	Added to matrix	Y	
4.3	Ease of Maintenance	SHLYM	The design should be easy to repair and maintain	3	Moved from Functional section	Y	
			Environme	ntal			
4.1	Material Processing	SHLYM	The raw material extraction, processing, and manufacturing are not dangerous to the environment or to the employees	4	Added to matrix	Y	
4.2	Waste Producing	SHLYM	Minimizing waste and hazardous by- products, air pollution, energy expenditure and others	3	Added to matrix	Y	



1								
	4.3	Design for Disposal or	SHLYM	The disposal or	2	Added to	Ν	Could not be
		Reuse		Reuse plan should		matrix		added due to
				be provided				time constraints

### **Appendix B: FEA**

#### **Box Carrier**

Box Carrier is the component holding the hive box. Solidworks 3D finite element analysis was used to analysis the stress and strain of a specific component through changing the material.

In this box carrier design, the box carrier is fixed at the bottom by the pneumatic cylinder. On the top of the bee box, it carries a full box (a bee box with 8 frames). The mass of the full box is 7 kg; however, considering the residual honey after the extraction, the mass of the full box is 18 kg in this simulation.

There is gravity exerting on the bee box. Here g is the gravity with a value of  $9.81 \text{ m/s}^2$ .

Assumptions:

- Applied external load is downwards only
- Load is symmetric
- Material properties are constant- no work hardening occurs

#### Material

Based on Safe Food for Canadian Regulation subdivision C, there are 2 materials – Steel 304 and Aluminum are recommended to use with the frames. Therefore, Steel 304 and Aluminum are used to design the box carrier, and their basic properties are shown in Table 6.

Table 6. Properties of Steel 304 and Aluminum.

Material	Elastic Modulus (N/m ² )	Mass Density (kg/m ³ )	Weight of carrier (kg)
Steel 304	$1.9 * 10^9$	8000	19.796
Aluminum	$6.9 * 10^{10}$	2700	6.681

Due to the limitation of CPU, the mesh is set to the global mesh 5. The mesh result is showed in Figure 12 for both Steel 304 and Aluminum.



Figure 12. The view of generated mesh with even distributed load.



(a)


Figure 13. The simulation result of Von Mises. (a) Steel 304. (b) Aluminum.

In Figure 13, the highest of Von Mises stress are presented around the fixed and symmetric for both Steel 304 and Aluminum,  $3.877*10^6$  N/m² and  $3.855*10^6$  N/m², respectively. There is 0.022  $*10^6$  N/m² difference.

In Figure 14, the strain of the box carrier of Steel 304 is  $1.77 \times 10^{-5}$  lower than Aluminum.



(a)



Figure 14. The simulation result of strain. (a) Steel 304. (b) Aluminum.

In Figure 15, both the safety factor of Steel 304 and Aluminum is about 3. Therefore, both materials achieve the design goal.



Figure 15. The simulation result of the safety factor. (a) Steel 304. (b) Aluminum.

Figure 16 shows the displacement of each material. The displacement of the Steel 304 is less than Aluminum by 0.105 mm.



(a)



*Figure 16. The simulation result of the displacement. (a) Steel 304. (b) Aluminum.* Therefore, Steel 304 is selected in this design.

## Dimension



To find the minimum stress and mass in the designed box carrier, the thickness was monitored in the design study. The result (Table 7) shows when thickness is 4 mm, the box carrier has a minimum stress  $3.866 * 10^6$  N/m² and a relatively small mass of 18.191 kg. In Figure 17, it presents the changing steps of the thickness.



Figure 17. The thickness changing for each scenario.

Table 7.The design study results.

Scenario No.	1	2	3	4	5	6
Thickness (mm)	3	4	5	6	7	8
Stress x10 ⁶ (N/m ² )	3.926	3.866	3.945	3.877	4.028	3.868
Displacement x10 ⁻⁵ (mm)	7.387	6.554	6.936	5.455	5.331	5.237
Factor of Safety	52.67	53.50	52.56	53.34	51.337	53.47
Mass (kg)	17.388	18.191	18.993	19.796	20.599	21.401

### History: Design Study 1

## Sensor support

The sensor support (Figure *18* (a)) holds a 30 g Diffuse-reflective Sensor which senses the number of frames from the extraction line. The material of the sensor support is selected to be AISI 304, and length of the sensor support is 260 mm.

Assumptions:

- Applied external load is downwards only
- Load is symmetric
- Material properties are constant- no work hardening occurs

Due to the limitation of the CPU and time constraints, the mesh was set to global meshing as shown in Figure 18 (b). To find the maximum displacement of the sensor support, the load was applied to the top and the fixture was applied to the bottom, even though part of the sensor support would be welded to the box carrier as shown in Figure 18 (a).



Figure 18. View of the sensor support. (a) General view. (b) Mesh of sensor support.

Using Von Mises simulation, the results demonstrated that the highest stress of  $3.103 \times 10^4 \text{ N/m}^2$ , which occurred at the concave side, was lower than the yield strength of  $2.068 \times 10^4 \text{ N/m}^2$ , shown in Figure 19.





## Figure 19. Simulation result of stress.

The highest displacement of  $1.968 * 10^{-3}$  mm occurred at the top plate where the sensor was mounted. This displacement was less than the goal displacement of 0.01 mm by 5 times. The results are shown in Figure 20.





The minimum factor of safety distribution is 3 or above. The results are shown in Figure 21.





## Figure 21. Simulation result of factor of safety.

To obtain the minimum mass, stress and displacement, the completed design study is shown in the Table 8 based on modifying the height of the support. The optimal height size was found to be 260 mm.

Scenario	1	2	3	4	5	6	7	8	9	10	11
Height (mm)	100	120	140	160	180	200	220	240	260	280	300
Stress (N/m ² )	33059	33012	31127	31287	31800	32527	32348	32813	31025	31188	31941
Mass (kg)	94	110	126	142	158	174	190	206	222	238	254
Displacement	5	5	5	4	4	4	5	5	5	5	4
x 10 ⁻⁸ (mm)											

Table 8. The design study of sensor support.

## **Pneumatic Cylinder Table**

The pneumatic cylinder table supports the Pneumatic air cylinder. The material of the sensor support is selected to be AISI 304.

Assumptions:

- The mass of the pneumatic cylinder table is 10 kg
- Applied external load is downwards only

- Load is evenly distributed
- Material properties are constant- no work hardening occurs

Due to the limitation of the CPU and time consuming, the global mesh is used in this study. The mesh is in Figure 22.



Figure 22. The mesh of the pneumatic table.

Through the Von Mises analysis, the largest of the Von Mises stress is  $7.403 \times 10^5 \text{ N/m}^2$  which is 280 times less than the yield strength 2.068 x  $10^8 \text{ N/m}^2$ . The result shows in Figure 23.





With set upper limit for factor of safety as 3, the simulations result shows the pneumatic cylinder table is meets the requirement. The result shows in Figure 24.



Figure 24. The FOS simulation result of pneumatic cylinder table.

## SHLYM Designs Appendix C: Cost Analysis

For the box packer machine, the required fabrication processes are:

- Waterjet cut sheet metal
- Bend sheet metal
- Cut plate steel and drill holes into plate steel
- Assemble cylinders into supports
- TIG weld sheet metal and Stick/MIG weld tubing to plate
- Form bolted connections

The estimated fabrication time is five hours including waterjet cutting time. Using a shop rate of \$100 per hour, the total manufacturing costs of the box packer are \$500.

For the box removal system, the required fabrication processes are:

- Cut plate steel and drill holes into plate steel
- Assembly cylinders into supports
- Form bolted connection
- 3D printing the rubber head

The estimated fabrication time is 24 hours including 3D printing. By the Solidworks manufacturing cost analysis, and a shop rate \$ 100 per hour, the total manufacturing cost of the box removal is \$ 349.

The Convenience Store Location: Canada C		CALL US TOL <b>1-866-86</b> Lowest Delive % off your first ord	7-9344 ered Price!!	Hello Sign Not a memb Register no	ber yet? bw!	Cart (1 item to be purchased and 1 item to be quoted)		Email Us
RETURN TO MAIN SITE	CONTACT US	-					_	
	CONTACT 03						_	
					Conti	nue Shopping	Proce	ed To Checkout
Customer Login	Products you a	re buying: 1						
* Username:	Item Descriptio	'n	Dimer	nsions		Quantity	,	Price
* Password:	STAINLESS SHEET (0.109 (12Ga) ST 304 Sku: SSH304/105/2		30.00	<b>X</b> 52.00	Inches  Weight: 53 LBS	I Per piece price: CDN	I\$352.13 Up	CDN\$352.13
Login Forgot Password	Click here to Add n	nore of this product	Comme	nts:				
Not Registered? Register Now to get 5% off your first order!	Register now to g	get 5% off your first o	order!			Materia	I Cost: (	CDN\$352.13
Order as a Guest Shipping * Name:	Products you a	re requesting a qu	ote for: 1					
	Item Description	'n		Dim	ensions			Quantity
* Address:	STAINLESS PLATE (0.250 ST 304 PLATE Sku: SP304/250		10	<b>x</b> 10	Inches	•		1 Update Delete
* Country:				Com	iments:			
Canada   City:		y from in-store prices. This on. Product availability var		ı in-	Contir	ue Shopping	Procee	d To Checkout
* Prov/State: Alberta	Other Metals v	vith similar Profile	Other Like Pro	files with s	imilar Grade	9		
T6E1R6	ALUMINUM S	HEET	• <u>304 STAINLE</u>	SS ANGLE				
* Phone Number:	BRASS SHEL		• <u>304 STAINLE</u>					
	COPPER SHI		• <u>304 STAINLES</u>					
* E-mail:	GALVANIZEE     STAINLESS		<ul> <li><u>304 STAINLE</u></li> <li><u>304 STAINLE</u></li> </ul>					
Fax Number:		ROLLED SHEET	• <u>304 STAINLE</u>		ARE			
	• STEEL-HOT	ROLLED SHEET						
✓ My Billing information is same as shipping								
Supermarkets	al Supermarkets offers over d Rolled Steel, Copper, Ho 021, MSKS IP Inc. scounts are for online orders		shapes and metal grades. V <u>I</u> . <u>RETURN TO MAIN SITE</u>   <u>S</u>					

## **304 Stainless Plate**





▲ California Residents Warning!

### Product / Size / Weight / Stock Select Size & Quantity to Add to Cart

3/16" (.1875) thick	Select Size 🔻	Qty 🗘	0.00	Add To Cart
304/304L Stainless Steel Plate - Mill Finish 1/4" (.250) thick	Select Size	Qty 🗘	0.00	Add To Cart
304/304L Stainless Steel Plate - Mill Finish 3/8" (.375) thick	Select Size	Qty 🗘	0.00	Add To Cart
304/304L Stainless Steel Plate - Mill Finish 1/2" (.500) thick 204/304L Stainless Steel Plate Mill Finish	Select Size	1 🗘	us⊳ <b>\$165.35</b> ea. ✔ In Stock	Add To Cart 🛛 😯 🛼
304/304L Stainless Steel Plate - Mill Finish 3/4" (.750) thick	Select Size	Qty 🗘	0.00	Add To Cart
F304 Stainless Steel Plate - Dull Mill Finish I'' (1.00) thick 304/304L Stainless Steel Plate - Mill Finish	Select Size 🔻	Qty 🗘	0.00	Add To Cart

	Model Name:	pneumatic table		
	Date and time of report:	2021-08-02 1:36:53 PM		
	Manufacturing Method:	Machining		
	Material:	AISI 304		
	Stock weight:	14.11 lb		
	Stock Type	Block		
	Block Size:	31.50x0.20x7.87 in		
	Material cost/weight:	9.80 USD/lb		
*	Shop Rate:	N/A		
	Quantity to Produce			
	Total number of parts:	100		
	Lot size:	100		
	Estimated cost per part:	141.29 USD		
		machiningtemplate_default(englishstandard).sldct		
	Costing template used:	m		
	Costing mode used:	Manufacturing Process Recognition		
	Comparison:	Current 141.29 USD Previous 141.29 USD		
	Cost Breakdown			
	Material:	138.27 USD 98%		
	Manufacturing:	3.01 USD 2%		
	Markup:	0.00 USD 0%		
	Mold:	0.00 USD 0%		
	Estimated time per part:	00:06:01		
	Setups:	00:05:35		
	Operations:	00:00:25		
Cost Report				



Model Name:	pneumatic table	Material	N	Material cost:138.27 USDTotal cost /part:Manufacturing cost:3.01 USDTotal time /part:Markup:0.00 USD		141.29 USD 00:06:01			
Manufactu	uring Cost Bre	akdown							
Operation	Setups		Tir	ne (hh:mm:s	s)	) Cost (USD / Par			
Setup Ope	Setup Operation 1			00:00:	36	0.4			
Total				00:00:	36	0.5			
Load and	Unload Setups		Time (hh:mm:ss)			Cost (USD / Pa			
Setup Ope	eration 1			00:05:0	00	2.5			
Total			00:05:00			2.5			
Hole Opera	ation	urface Finish	Volume Remove (in^3	-	ime :ss)	Cost (USD / Part)	Tooling	Cost-per- Volume (USD/in^3)	
Hole 1		Drill	0.0	2 00:0	0:06	0.05	HSS Drill	N/A	
Hole 2		Drill	0.0	2 00:0	0:06	0.05	HSS Drill	N/A	
Hole 3		Drill	0.0	2 00:0	0:06	0.05	HSS Drill	N/A	
Hole 4		Drill	0.0	2 00:0	0:06	0.05	HSS Drill	N/A	
Total			0.0	6 00:00	0:25	0.21			

## Setup Operations 1. Setup Operation 1

- - a. Hole 3
  - b. Hole 1
  - c. Hole 2
  - d. Hole 4



## SOLIDWORKS Costing Report



Model Name:	pneumatic cylinder mour	nt			
Date and time of report:	2021-08-02 2:55:33 PM				
Manufacturing Method:	Machining				
Material:	AISI 304				
Stock weight:	2.06 lb				
Stock Type	Block				
Block Size:	2.88x1.57x1.57 in				
Material cost/weight:	9.80 USD/lb				
Shop Rate:	N/A				
Quantity to Produce					
Total number of parts:	100				
Lot size:	100				
Estimated cost per part:	28.77 USD				
Costing template used:	machiningtemplate_default(englishstandard).sldct m				
Costing mode used:	Manufacturing Process Recognition				
Comparison:	100 Current 28				
		.77 USD			
Cost Breakdown		.77 USD			
Cost Breakdown Material:	20.20 USD	<b>77 USD</b> 70%			
Material:	20.20 USD	70%			
Material: Manufacturing:	20.20 USD 8.57 USD	70% 30%			
Material: Manufacturing: Markup:	20.20 USD 8.57 USD 0.00 USD	70% 30% 0%			
Material: Manufacturing: Markup: Mold:	20.20 USD 8.57 USD 0.00 USD 0.00 USD	70% 30% 0%			
Material: Manufacturing: Markup: Mold: Estimated time per part:	20.20 USD 8.57 USD 0.00 USD 0.00 USD 00:17:08	70% 30% 0%			



## Cost Report

Model Name:	pneumatic cylinder mount	Materia	N		ial cost: facturing cost: ıp:	20.20 USD 8.57 USD 0.00 USD	Total cost /part: Total time /part:	28.77 USD 00:17:08	
Manufact	uring Cost Brea	kdown	1						
Operation	n Setups		Tin	ne (	hh:mm:ss)		Cost	(USD / Part)	
Setup Op	eration 1				00:00:36			0.30	
Setup Op	eration 2				00:00:36			0.30	
Setup Op	eration 3				00:00:36			0.30	
Total					00:01:47			0.90	
Load and	Unload Setups		Tin	ne (	hh:mm:ss)		Cost	(USD / Part)	
Setup Op	eration 1				00:05:00			2.50	
Setup Op	eration 2				00:05:00			2.50	
Setup Op	eration 3				00:05:00	2.			
Total				00:15:00			7.		
Operatior		irface Finish	Volume Remove (in^3	-	Time (hh:mm:ss)	Cost (USD / Part)	Tooling	Cost-per- Volume (USD/in^3)	
Volume 1	Rou	Ighing	0.0	1	00:00:00	0.00	Flat End Mill	N/A	
Total			0.0	1	00:00:00	0.00			
Hole Ope	ration	irface Finish	Volume Removed (in^3		Time (hh:mm:ss)	Cost (USD / Part)	Tooling	Cost-per- Volume (USD/in^3)	
Hole 1		Drill	0.01	1	00:00:05	0.04	HSS Drill	N/A	
Hole 2		Drill	0.01	1	00:00:05	0.04	HSS Drill	N/A	
Hole 3		Drill	0.01	1	00:00:05	0.04	HSS Drill	N/A	
Hole 4		Drill	0.01	1	00:00:05	0.04	HSS Drill	N/A	
Total			0.05	5	00:00:20	0.17			
No Cost F	eatures								
Slot 1									
Fillet 1									



- Setup Operations 1. Setup Operation 1
  - a. Hole 1
  - b. Hole 2
  - 2. Setup Operation 2
    - a. Hole 3
    - b. Hole 4
  - 3. Setup Operation 3
    - a. Volume 1



## **Appendix D: Sustainability & Material Recycling Information**

Sustainability was kept in mind during the design of the box packer. As well as being key to the economic feasibility of the machine, it is also good for the environment. Specifically, it is straightforward to repair/replace broken or defective components without needing to throw the existing unit out. Once the machine has outlived its productive usefulness, there is little in the ways of disposable garbage. Most of the material used in the design is recyclable. The contact information of some local recyclers who can safely dispose of the machine is offered in Table 9 below.

Material	Company	Contact Information
Metals (Steel 304,	General	4120-84 Avenue, Edmonton, AB, T6B, 3H3
Aluminum)	Recycling	Local : 780-452-5865
	Industries LTD.	Toll Free : 1-866-983-9999
		Fax : 780-468-6111
		Email : Sales@generalcecycling.com
	Evraz Recycling	5857 12 St SE, Calgary, Alberta, T2H 2G7
		Phone : 403-252-1229
Wires	Bare Wire	1512 Hastings Crescent SE, Calgary, AB T2G 3S1
	Recycling Inc.	Phone: 403-998-9209

Table 9. Area recyclers accepting machine scrap.

General Recycling Industries LTD.: This company handles all the scrap metal recycling needs. They accept both ferrous materials (scrap metal) and non-ferrous material (such as copper, aluminum, and brass).

Evraz Recycling: The largest scrap metal recycler in Western Canada, and they buy, sell and process ferrous and non-ferrous materials and offer a wide variety of metal recycling option. Bare Wire Recycling Inc.: This company recycles the wire in Alberta.

## SHLYM Designs Appendix E: Controls & Automation

The automation of the design detailed within this report is dependent on being able to operate reliably and predictably without the involvement of human operators. This means that once boxes are unloaded onto the conveyer, the automation process should be able to move the box off the inconveyor onto the box packer machine and then off onto the out-conveyer. To provide this process autonomy, the electrical system is coupled with the pneumatic system through a microcontroller. Each of these systems is described in detail below.

## Electrical

It is assumed that a standard 120 V 15 A circuit can be provided and a receptacle/drop installed where the machine is to be located. The power requirements of this machine are minimal due to the primary use of pneumatics as the source of energy for movement. The electrical system senses the current state of the machine and controls the pneumatic process according to a program stored in read-write memory.

The required components are:

- A microcontroller (with power adapter) having the ability to read and write external electrical signals and execute modifiable programs. Although a sample script (or 'sketch' in Arduino parlance) is provided for an Arduino later in this section, numerous other low-cost microcontrollers are available.
- (7) sets of relay contacts, 6 for powering the pneumatic control valve solenoids and one for the conveyor drive motor. In this system, the directional air control valve solenoids operate on 120 V AC and so 120 V AC relays switched by 5 V DC are specified.
- A normally-closed emergency stop button placed in series with the power source for the air solenoids.
- An optical sensor to detect when a box is positioned in front of the 'hive box removal system' pneumatic cylinder.

## **Pneumatics**

It is assumed that the owner can provide dry, filtered air at a regulated pressure of 100 PSI to the location where the machine is to be installed. The components are as follows:

- (3) Pneumatic cylinders as specified in the bill of materials.
- (3) Directional air control valves to control pneumatic cylinder extension and retraction. These valves are double solenoid-controlled 5-port 3-position valves with either a closed or exhaust center. A closed center is used for the vertical cylinder only to ensure the cylinder remains extended when airflow is switched off. (1) Four-port manifold to let one inlet hose supply the three control valves.
- (6) Adjustable mufflers. These thread into the exhaust ports of the control valves and allow adjustment of the exhaust flow rate, in turn speeding up or slowing down how fast a cylinder can either extend or retract. Speeds can be set to be the same for extension/retraction or to be different.

## **Control & Sequence of Operation**

- 1. Empty boxes are placed on the motorized feeder conveyer belt. The motor for this conveyor belt is switched on either by a manual pushbutton accessible by the labourer who empties the frames out of the boxes at the start of the extraction line or by a high signal sent by the microcontroller acting through a relay. An optical sensor positioned in line with the pneumatic cylinder detects when a box is in front of the pneumatic cylinder and sends a signal to the microcontroller to turn off the relay powering the motor.
- 2. The microcontroller tracks the position of the cylinders in a set of variables.
- 3. When the box packer is in the home position and a box is situated in line with the box carrier/the pneumatic cylinder, the pneumatic cylinder extends through a partial stroke of 12" to push the box onto the box carrier. The cylinder remains extended at this point.
- 4. The microcontroller begins to command the box carrier through its horizontal and vertical translations. The horizontal cylinder first extends through its 18" stroke travel and stops. The vertical cylinder extends up 12" and stops. The round tube support legs are to be cut to such a length that he honey frames will be between ½ to ¾ in the box at the end of this travel. The horizontal cylinder then retracts, pulling the frames off the extraction line chain. The vertical cylinder then retracts, returning the box carrier and box to the home position.



- 5. The conveyer pneumatic continues extending to its maximum stroke of 24" to finish pushing the box off the box carrier and onto the conveyer which leads to pallet stacking.
- 6. The conveyor pneumatic cylinder retracts and the process cycles again as in 1).

## **Recommended future investments**

Should the owner wish to invest more into the machine, we recommend the following improvements to increase reliability and function:

- 1. Programmable flow valves on the exhaust ports of the directional air control valves allows for the speed of extension and retraction of the cylinder to be modified programmatically by adjusting the flow of exhaust through the flow valve. Specifically, this permits tuning of the motion that settles the frames into the box using quick back and forth motions of the horizontal cylinder to jostle the frames into the spacers. The use of programmable flow valves allows a gentler extension of the cylinder when moving the empty box under the frames, and for more rapid oscillations once loaded.
- 2. Sensor-ready cylinders and magnetic (reed) switches to sense cylinder position. Piston speed is intended to be kept low (on the order of 0.9144 m/s or 3.6 in/s) in order to keep dynamic loads low and reduce premature cylinder and support rail wear. The use of sensor-ready cylinders in conjunction with a reed sensor allows the position of the piston to be sensed and relayed to the microcontroller. With the higher speeds the recommendation in 1) entails, adding the ability to sense the piston location can be used to throttle the controlling flow valve, slowing the piston down to reduce the force acting on the cylinder endcaps.

## SHLYM Designs Sample Arduino Program

The following Arduino program or 'sketch' contains starter code with variables that will need to be fine-tuned during the commissioning process (namely, the length of time solenoids should be energized based on the speed of extension or retraction). The program also contains sections of commented-out code where the above future suggestions would go if implemented.

//digital pins 2-13 are available to use for digital read/write //optical sensor which detects for a box on the conveyor in line with the conveyor pneumatic cylinder int box_proximity_sensor = 2;

//conveyer pneumatic cylinder

int conveyer_pneumatic_extend = 3; //extend the cylinder by setting this pin high int conveyer_pneumatic_retract = 4; //retract the cylinder by setting this pin low

//horizontal pneumatic cylinder
int horizontal_pneumatic_extend = 5;
int horizontal_pneumatic_retract = 6;

//vertical pneumatic cylinder int vertical_pneumatic_extend = 7; int vertical_pneumatic_retract = 8;

int conveyor_motor_relay = 9;

/*IMPORTANT! The time that solenoids are energized to move pistons must be adjusted in commissioning along with the exhaust valves in order to ensure piston extension/retraction is kept close to 0.9144 m/s or 3.6 in/s. Adjust the below values as required. */

float conveyer_pneumatic_extend_partial_runtime = 0; //partial extension to push the box onto the box carrier
float conveyer_pneumatic_extend_full_runtime = 0; //additional time required to reach full stroke to push box off box carrier
float conveyer_pneumatic_retract_runtime = 0;
float horizontal_pneumatic_retract_runtime = 0;
float horizontal_pneumatic_retract_runtime = 0;
float vertical_pneumatic_extend__runtime = 0;



float vertical_pneumatic_retract_runtime = 0;

//set up pins to be in read or write mode
void setup()

{

pinMode(box_proximity_sensor, INPUT); pinMode(conveyer_pneumatic_extend, OUTPUT); pinMode(conveyer_pneumatic_retract, OUTPUT); pinMode(horizontal_pneumatic_extend, OUTPUT); pinMode(horizontal_pneumatic_retract, OUTPUT); pinMode(vertical_pneumatic_extend, OUTPUT); pinMode(vertical_pneumatic_retract, OUTPUT);

### //home the cylinders

if (digitalRead(box_proximity_sensor) == false)
{

digitalWrite(conveyer_pneumatic_retract, HIGH); delay(conveyer_pneumatic_retract_runtime); digitalWrite(conveyer_pneumatic_retract, LOW); }

digitalWrite(vertical_pneumatic_retract, HIGH); delay(vertical_pneumatic_retract_runtime); digitalWrite(vertical_pneumatic_retract, LOW;

digitalWrite(horizontal_pneumatic_retract, HIGH); delay(horizontal_pneumatic_retract_runtime); digitalWrite(horizontal_pneumatic_retract, LOW);

### }

void loop()

{

//if no box in front of conveyor cylinder, run the conveyor until a box is line with the cylinder
if (digitalRead(box_proximity_sensor) == false)
{



digitalWrite(conveyor_motor_relay, HIGH)
} while (digitalRead(box_proximity_sensor) == false)
}

digitalWrite(conveyor_motor_relay, LOW)

//begin by pushing the box onto the box carrier digitalWrite(conveyer_pneumatic_extend, HIGH); delay(conveyer_pneumatic_extend_partial_runtime); digitalWrite(conveyer_pneumatic_extend, LOW);

//extend the horizontal cylinder digitalWrite(horizontal_pneumatic_extend, HIGH); delay(horizontal_pneumatic_extend_runtime); digitalWrite(horizontal_pneumatic_extend, LOW);

//go up with the box digitalWrite(vertical_pneumatic_extend, HIGH); delay(vertical_pneumatic_extend_runtime); digitalWrite(vertical_pneumatic_extend, LOW);

//retract to pull frames off the chains
digitalWrite(horizontal_pneumatic_retract, HIGH);
delay(horizontal_pneumatic_retract_runtime);
digitalWrite(horizontal_pneumatic_extend, LOW);

//go back down with the filled box digitalWrite(vertical_pneumatic_retract, HIGH); delay(vertical_pneumatic_retract_runtime); digitalWrite(vertical_pneumatic_extend, LOW);

//push box off the box carrier
digitalWrite(conveyer_pneumatic_extend, HIGH);
delay(conveyer_pneumatic_extend_full_runtime);
digitalWrite(conveyer_pneumatic_extend, LOW);

//retract the conveyor cylinder to its fully retracted position
digitalWrite(conveyer_pneumatic_retract, HIGH);



delay(conveyer_pneumatic_retract_runtime); digitalWrite(conveyer_pneumatic_retract, LOW);

//give a one second delay and then repeat the program loop
delay(1000);

}

## SHILYM Designs Appendix F: Pneumatics Calculations

## UNIVERSITY OF ALBERTA

Rev.: 1.0 Author: M. Lantz

ENGINEERING CALCULATIONS WORKSHEET

Page: 1 of 3

#### TITLE:

PNEUMATIC CALCULATION TEMPLATE

#### PURPOSE :

THIS CALCULATION IS USED TO DETERMINE THE SIZE OF TUBING REQUIRED TO SUPPLY AIR TO THE PISTON AND FLOW RATE REQUIRED TO OPERATE AT THE PREDETERMINED SPEED FOR A CHOSEN PISTON

#### INITIAL CONDITIONS AND ASSUMPTIONS:

THIS IS A LIST OF ALL ASSUMPTIONS WITH A COLUMN OF LETTERS FOR REFERENCING.

- LOSSES ARE AT 10% OF THE INLET PSIG	(a)
- THE PIPING IS BETWEEN 1/8" AND 1/2"	(b)
- PRESSURE LOSSES ARE FOR 100'	(c)

#### LIST OF VARIABLES:

F	- FORCE	[lpf]
Р	- GAUGE PRESSURE	[psig]
А	- CROSS-SECTIONAL AREA	[mm²]
L	- LENGTH	[ft]
t	- TIME	[sec]
D	- DIAMETER	[mm]
Q	- VOLUMETRIC FLOW RATE	[cfm]
v	- VELOCITY	[m/s]



### 1) SYSTEM PARAMETERS

### PISTON FORCE:

 $F_{Piston} := 15 \text{ kg g}_{e}$ 

#### SYSTEM PRESSURE:

P_____i=100 psi

### PISTON STROKE:

 $L_{Piston} := 2 \text{ ft}$ 

### PISTON ACTUATION TIME:

 $t_{Piston} := 1 \sec$ 

### PISTON VELOCITY:

$$V_{req} := \frac{L_{Piston}}{t_{Piston}} = 0.6096 \frac{m}{s}$$

### 2) CALCULATION OF MINIMUM BORE SIZE

$$A_{bore} := \frac{F_{Piston}}{P_{System}} = 213.3501 \text{ mm}^2$$
$$D_{bore} := \sqrt{\frac{4}{\pi} \cdot A_{bore}} = 16.4817 \text{ mm}$$

Actual BORE SIZE

$$\begin{split} & \textit{D}_{bore2} := 2.5 \text{ in} \\ & \textit{A}_{bore2} := \textit{D}_{bore2}^{-2} \cdot \frac{\pi}{4} = 3166.9217 \text{ mm}^{-2} \end{split}$$

3) CALCULATION OF VOLUMETRIC FLOW RATE

$$Q_{Piston} := A_{bore2} \cdot V_{req} = 4.0906 \frac{ft^3}{min}$$

Pipe Air Flow

TEC-15



### 4) RECOMMENDED MINIMUM PIPING DIAMETER

THE RECOMMENDED MINIMUM PIPING DIAMETER HAS BEEN FOUND TO BE:

0.125 in



**Cycle Time Calculations** 

## UNIVERSITY OF ALBERTA

Rev.: 1.0 Author: M. Lantz

ENGINEERING CALCULATIONS

WORKSHEET

Page: 1 of 2

TITLE:

CYCLE TIME CALCULATION

#### PURPOSE :

THIS CALCULATION IS USED TO DETERMINE THE CYCLE TIME FOR THE PROCESS

#### LIST OF VARIABLES:

L	- LENGTH	[ft]
t	- TIME	[sec]
v	- VELOCITY	[m/s]
N	- COUNT	[]

### 1) SYSTEM PARAMETERS

PISTON Length:

 $L_{Piston} := 2 ft$ 

PISTON ACTUATION TIME:

t_{Piston} := 1 sec

PISTON VELOCITY:

$$V_{req} := \frac{L_{piston}}{t_{piston}} = 0.6096 \frac{m}{s}$$

NUMBER OF PISTONS EXTENSIONS/RETRACTIONS:

 $N_{Pistons} := 6$ 

SAFTEY FACTOR:

*S* := 2

NUMBER OF FRAMES PER BOX:

 $N_{Frames} := 8$ 

### 2) CALCULATION OF THEORETICAL CYCLE TIME

 $T_{process} := N_{Pistons} \cdot t_{Piston} = 6 s$ 

INCLUDING SAFTEY FACTOR FOR PAUSES:

 $T_{process} := N_{Pistons} \cdot t_{Piston} \cdot S = 12 \text{ s}$ 

NUMBER OF BOXES PER HOUR:

$$N_{Boxes} := \frac{1 \text{ hr}}{T_{process}} = 300$$

NUMBER OF FRAMES PER HOUR:

 $N := N_{Boxes} \cdot N_{Frames} = 2400$ 

### Force Required to Move Box Carrier x-direction

 $F_{appy} - N_{carr+box}g = ma_y \rightarrow \sigma_{pneu-y}\pi(r_{pneu})^2 - (m_{carr}+m_{box})g = (m_{carr}+m_{box})a_y$ 

### Force Required to Move Box Carrier y-direction

 $\mathsf{F}_{\mathsf{appx}} - \mu_k \mathsf{N}_{\mathsf{carr+box}} = \mathsf{ma}_x \rightarrow \sigma_{\mathsf{pneu-x}} \pi(\mathsf{r}_{\mathsf{pneu}})^2 - \mu k(\mathsf{m}_{\mathsf{carr}} + \mathsf{m}_{\mathsf{box}}) \mathsf{g} = (\mathsf{m}_{\mathsf{carr}} + \mathsf{m}_{\mathsf{box}}) \mathsf{a}_x$ 

Stress one pneumatic piston endures moving full Box Carrier y-direction

$$\sigma_{pneu-y} = \frac{N_{carr+box}}{4A_{pnu}} = \frac{(m_{carr}+m_{box})g}{4\pi r_{pnu}^2}$$

Stress pneumatic piston endures moving full Box Carrier x-direction

$$\sigma_{pneu-x} = \frac{\mu_{krail} N_{carr+box}}{A_{pnu}} = \frac{\mu_{krail} (m_{carr} + m_{box})g}{\pi r_{pnu}^2}$$

Stress pneumatic piston endures pushing Box

$$\sigma_{pneu} = \frac{\mu_{kbelt} N_{box}}{A_{pnu}} = \frac{\mu_{krail} m_{box} g}{\pi r_{pnu}^2}$$



Name: Qiulin Yu

Known:

Date: 2021 - 07 - 26

Objective: with force 100 N, Find the acceleration and force exerting on each box

$m_1 := 5 \text{ kg}$	the empty hive box
$m_2 := 7 \text{ kg}$	the hive box with 8 frame
$\boldsymbol{\mu}_k := 0.12$	The coefficient of kinetic friction between the box and the conveyor belt
$g \coloneqq 9.81 \ \frac{\text{N}}{\text{kg}}$	Gravity

Assumption: The firction

The firction coefficient is uniform No gap between two boxes

```
Sketch:
```



Analysis:

```
5 kg weight:w_1 := m_1 \cdot g = 49.05 N5 kg friction force:F_{f1} := \mu_k \cdot w_1 = 5.886 N7 kg weight:w_2 := m_2 \cdot g = 68.67 N7 kg friction force:F_{f2} := \mu_k \cdot w_2 = 8.2404 N
```

The total mass of the system is  $m_t := m_1 + m_2 = 12 \text{ kg}$ 

Assume a 100 N force is exterted on the 5 kg box F := 100 N

Based on Newtons second law

$$F_t := F - F_{f1} - F_{f2} = 85.8736 \text{ N}$$
$$a := \frac{F_t}{m_t} = 7.1561 \frac{\text{m}}{\text{s}^2}$$

Conclusion: The force exerting one each other is 85.87 N

## **Appendix H: Gantt Chart**

# Design/Automate Removal of Frames from an Extraction Line and Return the Frames to the Hive Box

## Team 2-SHLYM Design

Team 2-SHLYM Design								-	1					1															1		,				
-	Project Start Date 5/14/2021 Project Lead Mason Lantz			Week 1		Week 2			Week 3 24 May 2021		Week			Week 5 ' Jun 2021		Week 6	Week			/eek 8		Week	Week	Week 11 19 Jul 2021		Week 12 26 Jul 2021				Week 14					
Project Lead	Mason Lantz	-			May 2021		17 May 2					May 2					14 Jun 202	 21 Jun 2 21 22 23 24 2			un 2021		5 Jul 20	 12 Jul 2	 						9 Aug 2021				
TASK	START	END	OWNER	HOURS																											WTFSS				
Phase I				63																															
Letter of Intent(LOI)	Thu 5/13/21	Sun 5/16/21	Carlos/All	2																															
Cover Letter	Fri 5/28/21	Sat 5/29/21	Carlos/Quilin	1																															
Preliminary Research	Mon 5/10/21	Mon 5/31/21	All	20																															
Gantt Chart	Mon 5/17/21	Sat 5/29/21	All	2																															
Preliminary Design Constraints	Wed 5/26/21	Sun 5/30/21	All	2																															
Assumptions	Mon 5/24/21	Thu 5/27/21	All	4																															
Specifications Summary	Fri 5/28/21	Mon 5/31/21	Mason	1																															
Client Meetings	Fri 5/28/21	Fri 5/28/21	All	1																											 				
Advisor Meetings	Fri 5/28/21		All	2																															
Costs and Economics	Wed 5/26/21		Mason	2																															
Check Against Marking Scheme	-	Thu 6/03/21	Aidan	2																											 				
Project Management	-	Mon 5/31/21	Mason	3																															
Finish Team Charter		Sat 5/15/21	Aidan/Carlos	1																															
Phase 1: Concept Report	Fri 5/14/21	Wed 6/02/21	All	20								۰.																							
Phase II				171																															
Brainstorming	Fri 6/04/21	Thu 6/10/21	All	5																															
Mind Mapping	Fri 6/04/21	Thu 6/10/21	Carlos	6																															
Feasibility Study	Fri 6/04/21	Fri 6/11/21	Quilin	10																															
Concept 1 CAD	Fri 6/11/21	Thu 6/24/21	Mason	8																															
Concept 1 Calculations	Mon 6/21/21	Sat 6/26/21	Aidan	7																											 				
Concept 1 Cost Estimate	Wed 6/23/21		Mason	3																											 				
Concept 2 CAD		Thu 6/24/21	Quilin	12																															
Concept 2 Calculations	Mon 6/21/21		Aidan	7																															
Concept 2 Cost Estimate	Wed 6/23/21		Zachary	3																															
Concept 3 CAD	-	Thu 6/24/21	Carlos	12																															
Concept 3 Calculations	Mon 6/21/21		Aidan	7																															
Concept 3 Cost Estimate	Wed 6/23/21		Carlos/Zachary Quilin																																
		Sun 6/27/21		6															++												 				
Report Writing	Wed 6/23/21		All	60																															
Summary of Design Schedule Update		Wed 6/30/21 Mon 6/28/21	Carlos Quilin	10 5																															
Schedule Update Project Management		Wed 6/30/21	Quilin Mason	C A																															
Advisor Meetings		Wed 6/30/21 Wed 6/30/21	All	4																															
Auvisor meetings	Fil 0/04/21	vveu 0/30/21	All	З																															

## Design/Automate Removal of Frames from an Extraction Line and Return the Frames to the Hive Box

### Team 2-SHLYM Design

Team 2-SHLYM Design																								
Project Start Date	5/14/2021				Week 1	1	Neek 2	2	ek 3	Week	4	· ۱	Week 5	V	Veek 6	;	V	Veek	7	Wee	k 8	Wee	ek 9	We
Project Lead	Mason Lantz	-			 0 May 202	 	May 20		 iy 2021	 31 May 2			Jun 202	 	Jun 20			Jun 20		8 Jun		 5 Jul		 12 J
TASK	START	END	OWNER	HOURS	12 13 14 W T F																			
Phase III				247																				
Concept review preparation	Fri 7/02/21	Sun 7/04/21	All	5																				
Concept review meeting	Mon 7/05/21	Mon 7/05/21	All	1																				
Facility Visit	Tue 7/06/21	Tue 7/06/21	Mason	6																				
Detailed Calculations	Tue 7/06/21	Fri 7/16/21	Mason/Qiulin	40																				
i) Hand/computer-aided numerical solutions	Tue 7/06/21	Thu 7/15/21	Mason/Qiulin	37																				
ii) FEA Verification of Design	Fri 7/16/21	Fri 7/16/21	Zachary/Qiulin	3																				
CAD	Tue 7/06/21	Fri 7/30/21	Zachary/Qiulin	30																				
i) Component/part-level modelling	Tue 7/06/21	Tue 7/13/21																						
ii) Subassembly and final assembly	Tue 7/13/21	Fri 7/16/21																						
iii) Part and assembly drawings	Fri 7/16/21	Sun 7/25/21																						
iv) Compile drawing package and solid models	Mon 7/26/21	Wed 7/28/21																						
v) Final product renders	Thu 7/29/21	Fri 7/30/21	-																					
Electronics Analysis	Sat 7/31/21	Mon 8/02/21	Zachary	6																				
Cost Analysis	Mon 7/19/21	Fri 7/23/21	Zachary	10																				
i) Material and off-the-shelf component quotes	Mon 7/19/21	Wed 7/21/21	Zachary	6																				
ii) Assembly fabrication & integration quotes by vendors	Mon 7/19/21	Fri 7/23/21	Zachary	4																				
Design Compliance Matrix	Mon 7/12/21	Fri 7/16/21	Carlos/Aidan	10																				
Client sign-off Design Compliance Matrix	Sat 7/31/21	Tue 8/03/21	Mason	6																				
Project Management	Fri 7/02/21	Fri 8/06/21	Mason	4																				
Report Writing	Mon 7/12/21	Sun 8/01/21	All	50																				
Report Editing	Sun 8/01/21	Tue 8/03/21	All	5																				
Cover Letter	Mon 8/02/21	Mon 8/02/21	Carlos	2																				
Summary	Mon 8/02/21	Mon 8/02/21	Mason	2																				
Poster	Mon 7/19/21	Mon 8/02/21	All	24																				
Presentation	Mon 7/19/21	Mon 8/02/21	All	36																				
Client Meetings	Fri 7/02/21	Fri 8/06/21	All	6																				
Advisor Meetings	Fri 7/02/21	Fri 8/06/21	All	3																				
Phase III report submission	Wed 8/04/21	Wed 8/04/21	All	-																				
Peer evaluation	Wed 8/11/21	44419	All	0.5																				

